Gestational dietary intakes, metabolic abnormalities and human milk hormones

Sylvia Ley, RD, MSc, PhD(C) CFDR Breakfast and Research Showcase May 2012

- Changes in carbohydrate and lipid metabolism
- 4-18% pregnant women develop gestational diabetes

Butte Am J Clin Nutr 2000; 71:1256S CDA Can J Diabetes 2008; 32:S1

Consequences of Gestational Diabetes

	Mom	Offspring
pregnancy outcome	•c-section	 macrosomic infant
early postpartum / early life	 lactation performance 	 compromised nutrition
long-term	type 2 diabetesvascular disease	obesitytype 2 diabetes

Reece et al *Lancet* 2009;373:1789 Hilson et al *J Hum Lact* 2004;20:18

Dietary Intake and Glucose Metabolism

- Large prospective cohort studies
 - \uparrow total fat intake and \uparrow glucose intolerance
 - \uparrow *trans* fat, \downarrow polyunsaturated fat and \uparrow type 2 diabetes
- <u>Clinical studies</u>
 - \uparrow dietary fiber and \uparrow insulin sensitivity, \downarrow type 2 diabetes

Hu *et al. Diabetologia* 2001; 44:805 Weickert *et al. J Nutr* 2008; 138:439

Diet during 2nd Trimester of Pregnancy and Risk of Gestational Diabetes

n

		Ρ
Substituting 1% fat for CHO	1.1 (1.02-1.10)	0.002

Adjusted for BMI, maternal age, and ethnicity

Saldana et al. Am J Clin Nutr 2004; 79:479

DD (050/ CI)

Diet during 1st Trimester of Pregnancy and Risk of Gestational Diabetes

A Study of Health for the Next Generation

OR (95% CI)

Substituting 1% fat for CHO

1.00 (0.96-1.05)

Adjusted for maternal age, pre-pregnancy BMI, ethnicity, previous GDM, history of diabetes in participant's mother, smoking during pregnancy

Radesky et al. Paediatr Perinat Epidemiol 2008; 22:47

Consequences of Gestational Diabetes

	Mom	Offspring
pregnancy outcome	•c-section	 macrosomic infant
early postpartum / early life	 lactation performance 	 compromised nutrition
long-term	type 2 diabetesvascular disease	obesitytype 2 diabetes

Reece et al. Lancet 2009; 373:1789 Hilson et al. J Hum Lact 2004; 20:18

Milk from women with diabetes and offspring body weight at 2 years

Plagemann et al. Diabetes Care 2002; 25:16

Detection of Metabolic Hormones in Human Milk

Insulin

- Kulski et al. Endocrinol Exp 1983; 17:317
- Read et al. Pediatr Res 1984; 18:133
- Hamosh et al. Pediatr Clin North Am 2001; 48:69

• Adiponectin

- Martin et al. Am J Clin Nutr 2006; 83:1106
- Bronsky et al. Clin Chem 2006; 52:1763
- Weyermann et al. Clin Chem 2006; 52:2095

Knowledge Gaps

- 1. Only a few reports have investigated the impact of diet during pregnancy on risk of gestational diabetes, and none have studied this question using comprehensive glucose homeostasis profile
- 2. A number of studies have detected insulin and adiponectin in human milk, but none have investigated the impact of maternal metabolic status assessed during pregnancy on these hormones in milk

Maternal and Infant Nutrition Study

Scheduled Visits and Interim Interviews

Ley et al. BMC Public Health 2010;10:590

Methods: Study Participants

Results: Characteristics of participants by GDM status at 30±2.6 wks gestation

	No GDM	GDM
	(n=158)	(n=47)
Age (years)	34.3 ± 4.2	35.5 ± 4.5
Ethnicity*		
White	100 (62.9)	22 (47.8)
Non-White	58 (36.7)	25 (53.2)
Family history of type 2 diabetes*	79 (50.0)	33 (70.2)
Pregravid BMI (kg/m ²)	24.7 ± 4.8	26.5 ± 6.6
Nulliparous	90 (57.3)	21 (44.7)

*P<0.05; mean ± SD or n (%)

Results: Dietary composition and <u>insulin resistance</u> among those with a family history of diabetes¹

	beta ± SE	р
Energy	-0.0001 ± 0.0002	0.63
% carbohydrate	-0.038 ± 0.023	0.10
% total fat	0.023 ± 0.026	0.37
% saturated fat	0.104 ± 0.057	0.07
% <i>trans</i> fat	0.295 ± 0.361	0.42
P : S fat ratio	-0.938 ± 0.551	0.09
Total fibre ²	-0.031 ± 0.024	0.20
Veggie&fruit fiber ²	-0.100 ± 0.029	0.0008

¹Adjusted for age, ethnicity, pregravid BMI, parity, previous GDM, pregnancy weight gain up to the OGTT, and gestational weeks at the time of OGTT; ²Additionally for energy intake

Results: Dietary composition and <u>insulin sensitivity</u> among those with a family history of diabetes¹

	beta ± SE	р
Energy	0.00003 ± 0.00008	0.73
%carbohydrate	0.010 ± 0.009	0.28
% total fat	-0.0004 ± 0.010	0.97
% saturated fat	-0.020 ± 0.023	0.39
% <i>trans</i> fat	0.022 ± 0.143	0.88
P : S fat ratio	0.206 ± 0.220	0.35
Total fibre ²	0.003 ± 0.009	0.78
Veggie&fruit fiber ²	0.029 ± 0.012	0.01

¹Adjusted for age, ethnicity, pregravid BMI, parity, previous GDM, pregnancy weight gain up to the OGTT, and gestational weeks at the time of OGTT; ²Additionally for energy intake

Results: Macronutrient Intake and Risk for GDM

1. adjusted for age, ethnicity, family history of diabetes, pregravid BMI; 2. additionally for parity, previous GDM, pregnancy weight gain up to the OGTT, and gestational weeks at the OGTT

Scheduled Visits

Ley et al. BMC Public Health 2010; 10:590

Results: Milk adiponectin concentrations in first-week v. 3-month postpartum (n=111; paired t test)

Ley et al. Am J Clin Nutr 2012; 95:867

Results: Milk insulin concentrations in first-week v. 3-month postpartum (n=111; paired t test)

Results: Maternal prenatal metabolic measures and <u>milk adiponectin¹</u>

	1 st week		3mo	
	beta±SE	р	beta±SE	р
Pregravid BMI	0.003±0.014	0.81	-0.019±0.010	0.06
Serum Fasting Glucose	-0.048±0.139	0.73	-0.036±0.060	0.55
Serum HOMA-IR	0.027±0.053	0.61	-0.056±0.035	0.12
Serum ISogtt	-0.088±0.125	0.48	0.071±0.079	0.37
Serum adiponectin	0.102±0.032	0.002	0.045±0.020	0.03
Gestational diabetes	-0.129±0.180	0.47	-0.081±0.117	0.49

¹General linear model analyses were used with adjustment for maternal age, ethnicity, and postpartum time

Results: Maternal obstetrical measures and milk adiponectin¹

	1 st week		3mo	
-	beta±SE	р	beta±SE	р
Nulliparous	0.546±0.146	0.0002	0.138±0.098	0.16
Scheduled C-section ²	-0.422±0.186	0.02	-0.231±0.120	0.06
Unscheduled C-section ²	0.387±0.162	0.02	-0.158±0.107	0.14
Length of gestation	0.171±0.058	0.004	-0.027±0.040	0.50

¹General linear model analyses were used with adjustment for maternal age, ethnicity, and postpartum time ²v. spontaneous delivery

Results: Maternal prenatal metabolic measures and <u>milk insulin¹</u>

	1 st week		3mo	
	beta±SE	р	beta±SE	р
Pregravid BMI	-0.002±0.020	0.91	0.053±0.014	0.0003
Serum Fasting Glucose	-0.185±0.200	0.36	0.218±0.087	0.01
Serum HOMA-IR	0.015±0.077	0.85	0.255±0.047	<0.0001
Serum ISogtt	-0.217±0.180	0.23	-0.521±0.108	<0.0001
Serum adiponectin	-0.022±0.048	0.65	-0.116±0.029	<0.0001
Gestational diabetes	-0.200±0.259	0.44	0.102±0.174	0.56

¹General linear model analyses were used with adjustment for maternal age, ethnicity, and postpartum time

Results: Maternal obstetrical measures and <u>milk insulin¹</u>

	1 st week		3mo	
	beta±SE	р	beta±SE	р
Nulliparous	-0.191±0.219	0.38	-0.310±0.144	0.03
Scheduled C-section ²	-0.178±0.279	0.53	0.301±0.180	0.10
Unscheduled C-section ²	0.099±0.246	0.69	0.144±0.160	0.37
Length of gestation	-0.074±0.086	0.39	0.056±0.059	0.34

¹General linear model analyses were used with adjustment for maternal age, ethnicity, and postpartum time ²v. spontaneous delivery

Conclusions

- Prenatal metabolic abnormalities are associated with higher insulin in mature milk
- Obstetrical parameters are associated with higher adiponectin in early milk

Discussion

- <u>animal models</u>
 - oral insulin stimulated gut maturation/ function and attenuated atherosclerosis progression
- preterm infants
 - tube-fed insulin enhanced intestinal function and reduced feeding intolerance
- milk metabolic hormones might have a role through local and/or systemic mechanisms regulating infant development

Shehadeh et al. J Pediatr Gastroenterol Nutr 2006; 43:276

Donor Human Milk Experimental Study

Donor Human Milk

- There are increasing demands for donor milk when mother's own milk is not available
- Donor milk is pasteurized at 62.5°C for 30 min (Holder method) in North America
- Limited data are available on its impact on milk metabolic hormones

Tully *et al. J Hum Lact* 2000; 16:235 Human Milk Banking Association of North America 2005

Methods: Pasteurization Effects

Human Milk Bank Association of North America guidelines

- Milk samples from 34 mothers were pooled to produce 17 distinct batches (4 mothers / batch)
- Holder pasteurized (62.5°C for 30 min)
- Adiponectin, insulin, energy, fat, glucose and total protein concentrations were measured pre- and postpasteurization

Results: Concentrations (Mean ± SD) of milk components pre- and post-pasteurization

	Pre	Post	%Δ
Adiponectin, ng/mL	13.91 ± 4.84	9.34 ± 2.96	-32.8**
Insulin, pmol/L	162.8 ± 64.2	87.8 ±26.3	-46.1**
Energy, Kcal/dL	71.5 ± 9.9	69.4 ± 8.8	-2.9
Fat , g/L	4.29 ± 0.95	3.91 ± 0.81	-8.9*
Glucose, mmol/L	0.97 ± 0.25	1.11 ± 0.22	1.4*
Protein, g/L	14.8 ± 1.5	14.8 ± 1.1	<1.0

*<0.05; **<0.0001

Ley et al. Pediatr Res 2011; 70:278

Limitations and future directions

- Observed association of vegetable and fruit fiber intake with insulin sensitivity might have been confounded by other components
- Impact of variations in milk hormones on infant development and subsequent risk for type 2 diabetes warrants further investigation

Take Home Messages

Our findings support continued work to develop

- 1. prenatal nutritional strategies to prevent maternal metabolic abnormalities and
- 2. postnatal strategies to improve development of nutritionally vulnerable offspring exposed to maternal metabolic abnormalities

Acknowledgements

Anthony Hanley Deborah O'Connor Paul Pencharz Bernard Zinman Jill Hamilton Ravi Retnakaran Mathew Sermer Debbie Stone

Study moms and babies LSCD staff BBDC Core / O'Connor labs MSH nursing / lactation staff

CFDR New Researcher Grant CDA and CIHR Operating Grants CIHR Frederick Banting and Charles Best Canada Graduate Scholarship

Q and **A**