Non-western immigrant preschoolers have lower 25-hydroxyvitamin D than children from western born families

Jessica Omand RD MSc Candidate

St. Michael's Inspired Care. Inspiring Science.

Financial disclosure:

No conflicts to declare

Funding Acknowledgements:

- Canadian Institutes of Health Research (CIHR)/ Canadian Foundation for Dietetic Research (CFDR) master's award
- St. Michael's Foundation

What is TARGet Kids?

Growth and Development

Healthy growth and development beginning in early childhood, are associated with good health throughout a person's life

Getting the Best Start

Many of the greatest health challenges Canadians face begin in early life, and can be traced back to problems such as poor nutrition and obesity

TARGet Kids! Research Focus

Common health problems faced by urban preschoolaged children (1-6 years):

Overweight/Obesity

Vitamin D deficiency

Iron Deficiency

Intervene here

Birth

Nutritional disorder

Adverse health outcomes

Building Healthy Children

Primary Care for Children

Children attend a primary care visit 19 times in the first 5 years

Getting the best start to life can be accomplished with the help of primary care health professionals

Practice Embedded Data Collection

The TARGet Kids! Platform

Village Park Paediatrics

Dr. Eddy Lau

Dr. Brian Chisamore

Dr. Sharon Naymark

Tarandeep Malhi (RA)

Danforth Paediatrics

Dr. Patricia Neelands

Dr. Janet Saunderson

Dr. Anh Do

Laurie Thompson (RA)

Sterling Lyons Pediatrics

Dr. Ruth Grimes (RA)

Danforth Paediatrics

Dr. Marty Perlmutar

Dr. Karoon Danayan

Dr. Alana Rosenthal Juela Sejdo (RA)

Research Leads:

Dr. Patricia Parkin

Dr. Catherine Birken

Dr. Jonathon Maguire

Dr. Carrie Daymont
Dr. Evelyn Constantin

Research Managers/Coordinators:

Julie DeGroot

Marina Khovratovich

Sarah Carsley

Steering Committee:

Dr. Mark Feldman

Dr. Moshe Ipp

Dr. Brian Chisamore

Dr. Tony Barozzino

Clairhurst Paediatrics

Dr. Michael Peer

Dr. Sheila Jacobson

Dr. Carolyn Taylor

Subitha Rajakumaran (RA)

St Michael's Hospital 80 Bond Street Family Medicine Clinic

Dr. Nav Persaud

St Michael's Hospital Pediatric Ambulatory Clinic

Dr. Tony Barozzino
Dr. Michael Sgro

Dr. Sloane Freeman

Tonya D'Amour (RA)

St Michael's Hospital 410 Sherbourne Family Medicine Clinic

> Dr. Susan Shepherd Jessica Omand (RA)

Building Linked Databases

A Platform for Randomized Trials

Building Research Capacity

- Research Fellows/New Investigators :
 - Julia Morinis, Nav Persaud
- Graduate Students:
 - Kawsari Abdullah, Jessica Omand
- Clinical Fellows and Residents:
 - Maya Kumar, Amy French, Joan Abohweyere, Anne Fuller
- Medical Students:
 - Bradley Lichtblau, Janet McMullen, Anjali Kulkarni,
 Stephanie Erdle, Margaret Casson, Timothy Li, Lisa Liang

Research Study

The National Health and Nutrition Examination Survey (NHANES) 2001-2004

25-Hydroxyvitamin D serum levels		
	Mean nmol/L (95% CI)	
Ages 1-5 (n=1799)	70 (68-73)	

Mansbach J. et al. 2009. Pediatrics. 124(5): 1404-1410

Canadian Health Measures Survey (CHMS)

25-Hydroxyvitamin D serum levels		
	Mean nmol/L (95% CI)	
Ages 6-11	75 (70-80)	

Langlois. 2010. Statistics Canada: Health Reports. 21(1)

Known risk factors for low 25-hydroxyvitamin D

Greer 2008; Clemens 1982; Carpenter 2012; Gibson 2005; Nakao 1988; Maguire 2011; Vatanparast 2010; Kumar 2009; Gordon 2004; Ladizesky 1995; Matsuoka 1989; Webb 1988; Gilbert-Diamond 2010; Cizmecioglu 2008; Wortsman 2000; Goel 1976; Compston 1979; ; Glerup 2004; Holvik 2005; Robinson 2006; Ward 2007; McGillvray 2007; Lips 2007; Hintzpeter 2008; Madar 2009; Andersen 2008; Gozdik 2009

Immigration

- Immigration may be a risk factor for low 25-hydroxyvitamin D
- Infants and children of non-western immigrant families appear to be at risk of severe vitamin D deficiency rickets

Hypothesis

- Children older than 1 year from non-western immigrant families in Toronto may be at risk of lower serum 25hydroxyvitamin D concentration than children from western born families
 - This might be explained by known modifiable risk factors for low 25-hydroxyvitamin D, which could be targets for interventions

Objectives

- **Primary objective:** to determine whether children older than 1 year of age from non-western immigrant families have lower serum 25-hydroxyvitamin D levels than children from western born families
- <u>Secondary objective</u>: to examine whether known dietary, environmental or biological determinants of 25-hydroxyvitamin D influence this relationship

Methods

Design

Cross-sectional observational study - TARGet Kids! Cohort

Recruited during routine well child doctor's visits in Toronto
 December 2008 - July 2011

Population

<u>Inclusion criteria</u>

• Healthy children ages 1-6 and attend routine primary health care

Exclusion criteria

- Any chronic condition(s) except for asthma
- Severe developmental delay
- Non-verbal English
- Medications known to affect vitamin D metabolism

Measurements

Survey Measurement

 Parent completed standardized data collection form adapted from the Canadian Community Health Survey (Statistics Canada, 2004)

Physical Measurement

BMI (kg/m²) - weight and height

Laboratory Measurement

Serum 25-hydroxyvitamin D concentration

Exposure

Primary exposure: non-western immigration (non-western vs. western)

- We defined the exposure as:
 - <u>Non-western</u> = child born outside of a western country (Europe, North America, Australia or New Zealand) or a child who has a parent (one or both) who emigrated from a non-western country
 - Western = child born in a Western country and both parents born in western countries

Outcomes

- Primary outcome: 25-hydroxyvitamin D in nmol/L (continuous)
- Secondary outcome: 25-hydroxyvitamin D <50 nmol/L (binary)

Covariates

- Sex
- Age
- Skin pigmentation
- Ethnicity
- BMI
- Season
- Current vitamin D supplementation
- Cow's milk intake
- Outdoor play

Analysis

Primary analysis:

- Univariate linear regression for the primary outcome
- Univarite logistic regression for the secondary outcome

Secondary analysis:

- Multiple linear regression
 - 2 Biologically plausible interactions were considered:
 - Immigration and skin pigmentation
 - Immigration and vitamin D supplementation
- Potential confounding variables were explored

Results

Participation flowchart

Population Descriptors

	Children from western born families N=1119 (73%)		Children from non-western immigrant families N=421 (27%)	
Child characteristics	Frequency (%)	Median (Range)	Frequency (%)	Median (Range)
Age, months		36 (12–75)		38 (12–78)
Sex, male	564 (50)		221 (52)	
Skin pigmentation				
Light	1061 (95)		259 (62)	
Ethnicity				
Mixed western	958 (86)		46 (11)	
Mixed western/non-western	143 (13)		202 (48)	
East Asian & Southeast Asian	8 (1)		82 (19)	
Southwest Asian	9 (1)		61 14)	
African & Caribbean	1 (0.1)		30 (7)	
Vitamin D supplements				
Yes	633 (57)		217 (52)	

Primary analysis

Do children from non-western immigrant families have lower serum 25-hydroxyvitamin D levels than children from western born families?

Univariable linear regression:

4 nmol/L lower 25-hydroxyvitamin D (85 vs. 89 nmol/L, p=0.006, 95% CI: 1.3 – 8.0)

Univariable logistic regression:

■ Increased odds of 25-hydroxyvitamin D levels less than 50 nmol/L (OR 1.9, 95% CI: 1.3 – 2.9)

Secondary analysis

What is the influence of known vitamin D determinants on the relationship between non-western immigration and 25-hydroxyvitamin D?

Child characteristics	Change in serum 25-hydroxyvitamin D (nmol/L)	P-value
Immigration (non-western:western)	-0.04	0.99
Age, months	-0.09	0.04*
Sex (female:male)	-0.03	0.98
Skintype (dark:light)	-2.40	0.37
BMI, z-score	-1.01	0.18
Ethnicity		
Mixed western	Reference	0.09**
East Asian & Southeast Asian	-5.15	
Southwest Asian	-2.44	
African & Caribbean	-14.54	
Mixed Western/non-Western	-4.54	
Season (winter:summer)	-4.15	0.008*
Daily cow's milk intake, mL	0.02	<0.0001*
Vitamin D supplementation (yes:no)	7.58	<0.0001*
Outdoorplay (5-7:1-4hrs/week)	0.03	0.99

hydroxyvitamin D (p <0.05)

Discussion

- We identified an association between non-western immigration and lower 25-hydroxyvitamin D in early childhood
 - The association disappeared once known predictors of 25hydroxyvitamin D were accounted for
 - 2 modifiable factors were identified cow's milk intake and vitamin
 D supplementation
 - Vitamin D supplementation had the strongest confounding effect

Strengths & Limitations

Strengths:

- Large sample size
- Urban population

Limitations:

- Cross-sectional design, causality cannot be inferred
- Date since immigration to Canada
- Residual confounding
- Exclusion of non English speaking families
- Representative of non-urban populations

Conclusions

- Children from non-western immigrant families may be at increased risk of lower 25-hydroxyvitamin D concentration
 - Almost 2-fold increased odds of 25-hydroxyvitamin D levels less than 50 nmol/L
- The observed 25-hydroxyvitamin D mean difference between immigration groups could largely be explained by known vitamin D determinants
 - Vitamin D supplementation had the strongest confounding effect

Implications

• **Targeted interventions** to improve vitamin D supplementation among immigrant children beyond the first year of life may be successful at increasing 25-hydroxyvitamin D in this population

Acknowledgements

SickKids

St. Michael's

Inspired Care. Inspiring Science.

Committee

- •Dr. Jonathon Maguire (supervisor)
- •Dr. Pauline Darling (supervisor)
- Dr. Patricia Parkin
- •Dr. Catherine Birken
- Dr. Deborah O'Connor
- •Dr. Valerie Tarasuk

Funding

•CIHR priority announcement in nutrition and dietetic research (supported by CFDR)

Acknowledgments

TARGet Kids!

Dr. Patricia Parkin

Dr. Catherine Birken

Dr. Jonathon Maguire

Dr. Nav Persaud

Dr. Mark Feldman

Dr. Brian Chisamore

Dr. Moshe Ipp

Dr. Michael Peer

Dr. Caroline Taylor

Dr. Eddy Lau

Dr. Marty Perlmutar

Dr. Janet Saunderson

Dr. Joanne Vaughan

Dr. Patricia Neelands

Dr. Anh Doh

Dr. Sharon Naymark

Dr. Alana Rosenthal

Dr. Sheila Jacobson

Marina Khovratovich

Julie DeGroot

Sarah Carsley

AHRC

Dr. Muhammad Mamdani

Dr. Andreas Laupacis

Dr. David Klein

Dr. Gerald Lebovic

Kevin Thorpe

Magda Melo

Kim Phu

Judith Hall

Rino La Grassa

Bryan Boodhoo

Nike Onabajo

Trainees

Dr. Kawsari Abdullah

Jessica Omand

Dr. Julia Morinis

TARGet Kids! RAs

Laurie Thompson Subitha Rajakumaran Kanthi Kavikondala

Juela Sejdo

Tina Li

Tonya D'Amour Guaray Sharma

St. Michael's

Dr. Tony Barozzino

Dr. Philip Berger

Dr. Michael Sgro

Alayne Metrick

Mount Sinai

Dr. Azar Azad

Dr. Reinhold Vieth

Dr. Tony Mazzulli

Funding

CIHR

PSI Foundation

Dairy Farmer's of Canada

Dairy farmers of Ontario

Danone Institute SMH Foundation

HSC Foundation

Sun Life Financial